
Chapter 2

[37]

base, which made debugging a very painstaking and time-consuming process. With
improvements in the IDE, VS (Visual Studio) could debug such inline code script
tags, and VS 2005 upwards also supported IntelliSense in ASPX pages. But mixing
code and HTML was still a bad idea for the following reasons:

No separation of business logic, data access code, and presentation
(HTML): It was therefore not possible to have a distributed architecture in
the sense that the entire code base was monolithic in nature and could not be
physically separated.
Code re-use: Code cannot be re-used in other pages, whereas in code-behind
files, we can call methods from a class file in many pages.
Source Code Control (SCC) problems: A developer working on a file will
need to block (check-out) the entire file. In the code-behind model, different
developers can work on the UI and the code logic, as we have different files
for each.
Compilation model: Errors won't be found until the code is executed.
Maintenance issue: Long-term maintenance will be an issue.

There were also some advantages in using this inline model, but the disadvantages
above far outweighed any advantages:

Because we are not using class files, simply updating a page will propagate
changes to the server, without causing the users to log off, as no application
restart will take place. So we can update without stopping the application, or
causing an application restart.
There can be a slight performance benefit compared to using assemblies, but
this will be negligible, as modern day computing power is very fast.

Code-Behind Model: The Second UI Layer
In the above classic ASP style example, we noticed that the code and HTML were
separated but still present on the same ASPX page. ASP.NET introduced further
separation using the principle of code-behind classes, by pulling all of the code out
from the ASPX into a separate class and compiling it to a separate DLL. (Note
that a DLL is not really required either, if the developer wishes to deploy the
code-behind into the web directory. ASP.NET will compile the code "Just-In-Time"
into a temporary DLL, so "pre-compiling into a DLL" is not required either.) This
allowed the programmers to debug their applications more efficiently and also
introduced further loose coupling in the UI layer, introducing another layer into the
above 1-tier architecture.

•

•

•

•

•

•

•

1-Tier 1-Layer Architecture in ASP.NET

[38]

Here is a diagrammatic representation of the above style:

BaseClass generated after combining above
two partial classes

Default

myDLL

default ASPX class generated by the
aspnet_compiler deriving from the base class above

Default_aspx: Default

Partial Class 1
Code-behind class

Default.aspx.cs

Partial Class 2 :Designer
class

Default.aspx.designer.cs

The partial class compilation model was introduced with ASP.NET 2.0. Partial
classes help us break up a main class into sibling classes, which can be merged later
into one single class by the compiler. We can see that now instead of having a single
ASPX file, we have three separate files for a webform—an ASPX file containing
HTML UI elements, a code-behind file containing logical code, and an extra designer
class file which is auto-generated by the VS and has the declaration of all of the
server controls used in the ASPX form. At runtime, the code-behind class is compiled
together with the designer.cs class (containing protected control declarations), and
this merged class is used as the base class for the ASPX form class. This approach
helped separate the UI code from the HTML elements, and this logical separation in
terms of code-behind classes was the second layer style.

Layer 1
HTML/ASPX/.designer files

Layer 2
Code-behind files

